1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use rustc_front::hir::*;
use reexport::*;
use rustc::lint::*;
use syntax::codemap::Span;
use rustc_front::visit::{Visitor, walk_ty, walk_ty_param_bound};
use std::collections::HashSet;

use utils::{in_external_macro, span_lint};

declare_lint!(pub NEEDLESS_LIFETIMES, Warn,
              "using explicit lifetimes for references in function arguments when elision rules \
               would allow omitting them");

#[derive(Copy,Clone)]
pub struct LifetimePass;

impl LintPass for LifetimePass {
    fn get_lints(&self) -> LintArray {
        lint_array!(NEEDLESS_LIFETIMES)
    }
}

impl LateLintPass for LifetimePass {
    fn check_item(&mut self, cx: &LateContext, item: &Item) {
        if let ItemFn(ref decl, _, _, _, ref generics, _) = item.node {
            check_fn_inner(cx, decl, None, &generics, item.span);
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) {
        if let MethodImplItem(ref sig, _) = item.node {
            check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self),
                           &sig.generics, item.span);
        }
    }

    fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) {
        if let MethodTraitItem(ref sig, _) = item.node {
            check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self),
                           &sig.generics, item.span);
        }
    }
}

/// The lifetime of a &-reference.
#[derive(PartialEq, Eq, Hash, Debug)]
enum RefLt {
    Unnamed,
    Static,
    Named(Name),
}
use self::RefLt::*;

fn check_fn_inner(cx: &LateContext, decl: &FnDecl, slf: Option<&ExplicitSelf>,
                  generics: &Generics, span: Span) {
    if in_external_macro(cx, span) || has_where_lifetimes(&generics.where_clause) {
        return;
    }
    if could_use_elision(decl, slf, &generics.lifetimes) {
        span_lint(cx, NEEDLESS_LIFETIMES, span,
                  "explicit lifetimes given in parameter types where they could be elided");
    }
}

fn could_use_elision(func: &FnDecl, slf: Option<&ExplicitSelf>,
                     named_lts: &[LifetimeDef]) -> bool {
    // There are two scenarios where elision works:
    // * no output references, all input references have different LT
    // * output references, exactly one input reference with same LT
    // All lifetimes must be unnamed, 'static or defined without bounds on the
    // level of the current item.

    // check named LTs
    let allowed_lts = allowed_lts_from(named_lts);

    // these will collect all the lifetimes for references in arg/return types
    let mut input_visitor = RefVisitor(Vec::new());
    let mut output_visitor = RefVisitor(Vec::new());

    // extract lifetime in "self" argument for methods (there is a "self" argument
    // in func.inputs, but its type is TyInfer)
    if let Some(slf) = slf {
        match slf.node {
            SelfRegion(ref opt_lt, _, _) => input_visitor.record(opt_lt),
            SelfExplicit(ref ty, _) => walk_ty(&mut input_visitor, ty),
            _ => { }
        }
    }
    // extract lifetimes in input argument types
    for arg in &func.inputs {
        walk_ty(&mut input_visitor, &arg.ty);
        if let TyRptr(None, _) = arg.ty.node {
            input_visitor.record(&None);
        }
    }
    // extract lifetimes in output type
    if let Return(ref ty) = func.output {
        walk_ty(&mut output_visitor, ty);
    }

    let input_lts = input_visitor.into_vec();
    let output_lts = output_visitor.into_vec();

    // check for lifetimes from higher scopes
    for lt in input_lts.iter().chain(output_lts.iter()) {
        if !allowed_lts.contains(lt) {
            return false;
        }
    }

    // no input lifetimes? easy case!
    if input_lts.is_empty() {
        return false;
    } else if output_lts.is_empty() {
        // no output lifetimes, check distinctness of input lifetimes

        // only unnamed and static, ok
        if input_lts.iter().all(|lt| *lt == Unnamed || *lt == Static) {
            return false;
        }
        // we have no output reference, so we only need all distinct lifetimes
        if input_lts.len() == unique_lifetimes(&input_lts) {
            return true;
        }
    } else {
        // we have output references, so we need one input reference,
        // and all output lifetimes must be the same
        if unique_lifetimes(&output_lts) > 1 {
            return false;
        }
        if input_lts.len() == 1 {
            match (&input_lts[0], &output_lts[0]) {
                (&Named(n1), &Named(n2)) if n1 == n2 => { return true; }
                (&Named(_), &Unnamed) => { return true; }
                (&Unnamed, &Named(_)) => { return true; }
                _ => { } // already elided, different named lifetimes
                         // or something static going on
            }
        }
    }
    false
}

fn allowed_lts_from(named_lts: &[LifetimeDef]) -> HashSet<RefLt> {
    let mut allowed_lts = HashSet::new();
    for lt in named_lts {
        if lt.bounds.is_empty() {
            allowed_lts.insert(Named(lt.lifetime.name));
        }
    }
    allowed_lts.insert(Unnamed);
    allowed_lts.insert(Static);
    allowed_lts
}

/// Number of unique lifetimes in the given vector.
fn unique_lifetimes(lts: &[RefLt]) -> usize {
    lts.iter().collect::<HashSet<_>>().len()
}

/// A visitor usable for rustc_front::visit::walk_ty().
struct RefVisitor(Vec<RefLt>);

impl RefVisitor {
    fn record(&mut self, lifetime: &Option<Lifetime>) {
        if let &Some(ref lt) = lifetime {
            if lt.name.as_str() == "'static" {
                self.0.push(Static);
            } else {
                self.0.push(Named(lt.name));
            }
        } else {
            self.0.push(Unnamed);
        }
    }

    fn into_vec(self) -> Vec<RefLt> {
        self.0
    }
}

impl<'v> Visitor<'v> for RefVisitor {
    // for lifetimes as parameters of generics
    fn visit_lifetime(&mut self, lifetime: &'v Lifetime) {
        self.record(&Some(*lifetime));
    }

    fn visit_ty(&mut self, ty: &'v Ty) {
        if let TyRptr(None, _) = ty.node {
            self.record(&None);
        }
        walk_ty(self, ty);
    }
}

/// Are any lifetimes mentioned in the `where` clause? If yes, we don't try to
/// reason about elision.
fn has_where_lifetimes(where_clause: &WhereClause) -> bool {
    for predicate in &where_clause.predicates {
        match *predicate {
            WherePredicate::RegionPredicate(..) => return true,
            WherePredicate::BoundPredicate(ref pred) => {
                // a predicate like F: Trait or F: for<'a> Trait<'a>
                let mut visitor = RefVisitor(Vec::new());
                // walk the type F, it may not contain LT refs
                walk_ty(&mut visitor, &pred.bounded_ty);
                if !visitor.0.is_empty() { return true; }
                // if the bounds define new lifetimes, they are fine to occur
                let allowed_lts = allowed_lts_from(&pred.bound_lifetimes);
                // now walk the bounds
                for bound in pred.bounds.iter() {
                    walk_ty_param_bound(&mut visitor, bound);
                }
                // and check that all lifetimes are allowed
                for lt in visitor.into_vec() {
                    if !allowed_lts.contains(&lt) {
                        return true;
                    }
                }
            }
            WherePredicate::EqPredicate(ref pred) => {
                let mut visitor = RefVisitor(Vec::new());
                walk_ty(&mut visitor, &pred.ty);
                if !visitor.0.is_empty() { return true; }
            }
        }
    }
    false
}