1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use rustc_front::hir::*;
use reexport::*;
use rustc::lint::*;
use syntax::codemap::Span;
use rustc_front::visit::{Visitor, walk_ty, walk_ty_param_bound};
use std::collections::HashSet;
use utils::{in_external_macro, span_lint};
declare_lint!(pub NEEDLESS_LIFETIMES, Warn,
"using explicit lifetimes for references in function arguments when elision rules \
would allow omitting them");
#[derive(Copy,Clone)]
pub struct LifetimePass;
impl LintPass for LifetimePass {
fn get_lints(&self) -> LintArray {
lint_array!(NEEDLESS_LIFETIMES)
}
}
impl LateLintPass for LifetimePass {
fn check_item(&mut self, cx: &LateContext, item: &Item) {
if let ItemFn(ref decl, _, _, _, ref generics, _) = item.node {
check_fn_inner(cx, decl, None, &generics, item.span);
}
}
fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) {
if let MethodImplItem(ref sig, _) = item.node {
check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self),
&sig.generics, item.span);
}
}
fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) {
if let MethodTraitItem(ref sig, _) = item.node {
check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self),
&sig.generics, item.span);
}
}
}
#[derive(PartialEq, Eq, Hash, Debug)]
enum RefLt {
Unnamed,
Static,
Named(Name),
}
use self::RefLt::*;
fn check_fn_inner(cx: &LateContext, decl: &FnDecl, slf: Option<&ExplicitSelf>,
generics: &Generics, span: Span) {
if in_external_macro(cx, span) || has_where_lifetimes(&generics.where_clause) {
return;
}
if could_use_elision(decl, slf, &generics.lifetimes) {
span_lint(cx, NEEDLESS_LIFETIMES, span,
"explicit lifetimes given in parameter types where they could be elided");
}
}
fn could_use_elision(func: &FnDecl, slf: Option<&ExplicitSelf>,
named_lts: &[LifetimeDef]) -> bool {
let allowed_lts = allowed_lts_from(named_lts);
let mut input_visitor = RefVisitor(Vec::new());
let mut output_visitor = RefVisitor(Vec::new());
if let Some(slf) = slf {
match slf.node {
SelfRegion(ref opt_lt, _, _) => input_visitor.record(opt_lt),
SelfExplicit(ref ty, _) => walk_ty(&mut input_visitor, ty),
_ => { }
}
}
for arg in &func.inputs {
walk_ty(&mut input_visitor, &arg.ty);
if let TyRptr(None, _) = arg.ty.node {
input_visitor.record(&None);
}
}
if let Return(ref ty) = func.output {
walk_ty(&mut output_visitor, ty);
}
let input_lts = input_visitor.into_vec();
let output_lts = output_visitor.into_vec();
for lt in input_lts.iter().chain(output_lts.iter()) {
if !allowed_lts.contains(lt) {
return false;
}
}
if input_lts.is_empty() {
return false;
} else if output_lts.is_empty() {
if input_lts.iter().all(|lt| *lt == Unnamed || *lt == Static) {
return false;
}
if input_lts.len() == unique_lifetimes(&input_lts) {
return true;
}
} else {
if unique_lifetimes(&output_lts) > 1 {
return false;
}
if input_lts.len() == 1 {
match (&input_lts[0], &output_lts[0]) {
(&Named(n1), &Named(n2)) if n1 == n2 => { return true; }
(&Named(_), &Unnamed) => { return true; }
(&Unnamed, &Named(_)) => { return true; }
_ => { }
}
}
}
false
}
fn allowed_lts_from(named_lts: &[LifetimeDef]) -> HashSet<RefLt> {
let mut allowed_lts = HashSet::new();
for lt in named_lts {
if lt.bounds.is_empty() {
allowed_lts.insert(Named(lt.lifetime.name));
}
}
allowed_lts.insert(Unnamed);
allowed_lts.insert(Static);
allowed_lts
}
fn unique_lifetimes(lts: &[RefLt]) -> usize {
lts.iter().collect::<HashSet<_>>().len()
}
struct RefVisitor(Vec<RefLt>);
impl RefVisitor {
fn record(&mut self, lifetime: &Option<Lifetime>) {
if let &Some(ref lt) = lifetime {
if lt.name.as_str() == "'static" {
self.0.push(Static);
} else {
self.0.push(Named(lt.name));
}
} else {
self.0.push(Unnamed);
}
}
fn into_vec(self) -> Vec<RefLt> {
self.0
}
}
impl<'v> Visitor<'v> for RefVisitor {
fn visit_lifetime(&mut self, lifetime: &'v Lifetime) {
self.record(&Some(*lifetime));
}
fn visit_ty(&mut self, ty: &'v Ty) {
if let TyRptr(None, _) = ty.node {
self.record(&None);
}
walk_ty(self, ty);
}
}
fn has_where_lifetimes(where_clause: &WhereClause) -> bool {
for predicate in &where_clause.predicates {
match *predicate {
WherePredicate::RegionPredicate(..) => return true,
WherePredicate::BoundPredicate(ref pred) => {
let mut visitor = RefVisitor(Vec::new());
walk_ty(&mut visitor, &pred.bounded_ty);
if !visitor.0.is_empty() { return true; }
let allowed_lts = allowed_lts_from(&pred.bound_lifetimes);
for bound in pred.bounds.iter() {
walk_ty_param_bound(&mut visitor, bound);
}
for lt in visitor.into_vec() {
if !allowed_lts.contains(<) {
return true;
}
}
}
WherePredicate::EqPredicate(ref pred) => {
let mut visitor = RefVisitor(Vec::new());
walk_ty(&mut visitor, &pred.ty);
if !visitor.0.is_empty() { return true; }
}
}
}
false
}