1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
use rustc::lint::*;
use rustc_front::hir::*;
use reexport::*;
use rustc_front::util::{is_comparison_binop, binop_to_string};
use syntax::codemap::Span;
use rustc_front::visit::{FnKind, Visitor, walk_ty};
use rustc::middle::ty;
use syntax::ast::IntTy::*;
use syntax::ast::UintTy::*;
use syntax::ast::FloatTy::*;

use utils::{match_type, snippet, span_lint, span_help_and_lint};
use utils::{is_from_for_desugar, in_macro, in_external_macro};
use utils::{LL_PATH, VEC_PATH};

/// Handles all the linting of funky types
#[allow(missing_copy_implementations)]
pub struct TypePass;

declare_lint!(pub BOX_VEC, Warn,
              "usage of `Box<Vec<T>>`, vector elements are already on the heap");
declare_lint!(pub LINKEDLIST, Warn,
              "usage of LinkedList, usually a vector is faster, or a more specialized data \
               structure like a VecDeque");

impl LintPass for TypePass {
    fn get_lints(&self) -> LintArray {
        lint_array!(BOX_VEC, LINKEDLIST)
    }
}

impl LateLintPass for TypePass {
    fn check_ty(&mut self, cx: &LateContext, ast_ty: &Ty) {
        if let Some(ty) = cx.tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) {
            if let ty::TyBox(ref inner) = ty.sty {
                if match_type(cx, inner, &VEC_PATH) {
                    span_help_and_lint(
                        cx, BOX_VEC, ast_ty.span,
                        "you seem to be trying to use `Box<Vec<T>>`. Consider using just `Vec<T>`",
                        "`Vec<T>` is already on the heap, `Box<Vec<T>>` makes an extra allocation.");
                }
            }
            else if match_type(cx, ty, &LL_PATH) {
                span_help_and_lint(
                    cx, LINKEDLIST, ast_ty.span,
                    "I see you're using a LinkedList! Perhaps you meant some other data structure?",
                    "a VecDeque might work");
            }
        }
    }
}

#[allow(missing_copy_implementations)]
pub struct LetPass;

declare_lint!(pub LET_UNIT_VALUE, Warn,
              "creating a let binding to a value of unit type, which usually can't be used afterwards");

fn check_let_unit(cx: &LateContext, decl: &Decl) {
    if let DeclLocal(ref local) = decl.node {
        let bindtype = &cx.tcx.pat_ty(&local.pat).sty;
        if *bindtype == ty::TyTuple(vec![]) {
            if in_external_macro(cx, decl.span) ||
                in_macro(cx, local.pat.span) { return; }
                if is_from_for_desugar(decl) { return; }
                span_lint(cx, LET_UNIT_VALUE, decl.span, &format!(
                    "this let-binding has unit value. Consider omitting `let {} =`",
                    snippet(cx, local.pat.span, "..")));
        }
    }
}

impl LintPass for LetPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(LET_UNIT_VALUE)
    }
}

impl LateLintPass for LetPass {
    fn check_decl(&mut self, cx: &LateContext, decl: &Decl) {
        check_let_unit(cx, decl)
    }
}

declare_lint!(pub UNIT_CMP, Warn,
              "comparing unit values (which is always `true` or `false`, respectively)");

#[allow(missing_copy_implementations)]
pub struct UnitCmp;

impl LintPass for UnitCmp {
    fn get_lints(&self) -> LintArray {
        lint_array!(UNIT_CMP)
    }
}

impl LateLintPass for UnitCmp {
    fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
        if in_macro(cx, expr.span) { return; }
        if let ExprBinary(ref cmp, ref left, _) = expr.node {
            let op = cmp.node;
            let sty = &cx.tcx.expr_ty(left).sty;
            if *sty == ty::TyTuple(vec![]) && is_comparison_binop(op) {
                let result = match op {
                    BiEq | BiLe | BiGe => "true",
                    _ => "false"
                };
                span_lint(cx, UNIT_CMP, expr.span, &format!(
                    "{}-comparison of unit values detected. This will always be {}",
                    binop_to_string(op), result));
            }
        }
    }
}

pub struct CastPass;

declare_lint!(pub CAST_PRECISION_LOSS, Allow,
              "casts that cause loss of precision, e.g `x as f32` where `x: u64`");
declare_lint!(pub CAST_SIGN_LOSS, Allow,
              "casts from signed types to unsigned types, e.g `x as u32` where `x: i32`");
declare_lint!(pub CAST_POSSIBLE_TRUNCATION, Allow,
              "casts that may cause truncation of the value, e.g `x as u8` where `x: u32`, or `x as i32` where `x: f32`");
declare_lint!(pub CAST_POSSIBLE_WRAP, Allow,
              "casts that may cause wrapping around the value, e.g `x as i32` where `x: u32` and `x > i32::MAX`");

/// Returns the size in bits of an integral type.
/// Will return 0 if the type is not an int or uint variant
fn int_ty_to_nbits(typ: &ty::TyS) -> usize {
    let n = match typ.sty {
        ty::TyInt(i) =>  4 << (i as usize),
        ty::TyUint(u) => 4 << (u as usize),
        _ => 0
    };
    // n == 4 is the usize/isize case
    if n == 4 { ::std::usize::BITS } else { n }
}

fn is_isize_or_usize(typ: &ty::TyS) -> bool {
    match typ.sty {
        ty::TyInt(TyIs) | ty::TyUint(TyUs) => true,
        _ => false
    }
}

fn span_precision_loss_lint(cx: &LateContext, expr: &Expr, cast_from: &ty::TyS, cast_to_f64: bool) {
    let mantissa_nbits = if cast_to_f64 {52} else {23};
    let arch_dependent = is_isize_or_usize(cast_from) && cast_to_f64;
    let arch_dependent_str = "on targets with 64-bit wide pointers ";
    let from_nbits_str = if arch_dependent {"64".to_owned()}
                         else if is_isize_or_usize(cast_from) {"32 or 64".to_owned()}
                         else {int_ty_to_nbits(cast_from).to_string()};
    span_lint(cx, CAST_PRECISION_LOSS, expr.span,
        &format!("casting {0} to {1} causes a loss of precision {2}\
            ({0} is {3} bits wide, but {1}'s mantissa is only {4} bits wide)",
            cast_from, if cast_to_f64 {"f64"} else {"f32"},
            if arch_dependent {arch_dependent_str} else {""},
            from_nbits_str, mantissa_nbits));
}

enum ArchSuffix {
    _32, _64, None
}

fn check_truncation_and_wrapping(cx: &LateContext, expr: &Expr, cast_from: &ty::TyS, cast_to: &ty::TyS) {
    let arch_64_suffix = " on targets with 64-bit wide pointers";
    let arch_32_suffix = " on targets with 32-bit wide pointers";
    let cast_unsigned_to_signed = !cast_from.is_signed() && cast_to.is_signed();
    let (from_nbits, to_nbits) = (int_ty_to_nbits(cast_from), int_ty_to_nbits(cast_to));
    let (span_truncation, suffix_truncation, span_wrap, suffix_wrap) =
        match (is_isize_or_usize(cast_from), is_isize_or_usize(cast_to)) {
            (true, true) | (false, false) => (
                to_nbits < from_nbits,
                ArchSuffix::None,
                to_nbits == from_nbits && cast_unsigned_to_signed,
                ArchSuffix::None
                ),
            (true, false) => (
                to_nbits <= 32,
                if to_nbits == 32 {ArchSuffix::_64} else {ArchSuffix::None},
                to_nbits <= 32 && cast_unsigned_to_signed,
                ArchSuffix::_32
                ),
            (false, true) => (
                from_nbits == 64,
                ArchSuffix::_32,
                cast_unsigned_to_signed,
                if from_nbits == 64 {ArchSuffix::_64} else {ArchSuffix::_32}
                ),
        };
    if span_truncation {
        span_lint(cx, CAST_POSSIBLE_TRUNCATION, expr.span,
            &format!("casting {} to {} may truncate the value{}",
               cast_from, cast_to,
               match suffix_truncation {
                   ArchSuffix::_32 => arch_32_suffix,
                   ArchSuffix::_64 => arch_64_suffix,
                   ArchSuffix::None => "" }));
    }
    if span_wrap {
        span_lint(cx, CAST_POSSIBLE_WRAP, expr.span,
            &format!("casting {} to {} may wrap around the value{}",
                cast_from, cast_to,
                match suffix_wrap {
                    ArchSuffix::_32 => arch_32_suffix,
                    ArchSuffix::_64 => arch_64_suffix,
                    ArchSuffix::None => "" }));
    }
}

impl LintPass for CastPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(CAST_PRECISION_LOSS,
                    CAST_SIGN_LOSS,
                    CAST_POSSIBLE_TRUNCATION,
                    CAST_POSSIBLE_WRAP)
    }
}

impl LateLintPass for CastPass {
    fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
        if let ExprCast(ref ex, _) = expr.node {
            let (cast_from, cast_to) = (cx.tcx.expr_ty(ex), cx.tcx.expr_ty(expr));
            if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx, expr.span) {
                match (cast_from.is_integral(), cast_to.is_integral()) {
                    (true, false) => {
                        let from_nbits = int_ty_to_nbits(cast_from);
                        let to_nbits = if let ty::TyFloat(TyF32) = cast_to.sty {32} else {64};
                        if is_isize_or_usize(cast_from) || from_nbits >= to_nbits {
                            span_precision_loss_lint(cx, expr, cast_from, to_nbits == 64);
                        }
                    },
                    (false, true) => {
                        span_lint(cx, CAST_POSSIBLE_TRUNCATION, expr.span,
                            &format!("casting {} to {} may truncate the value",
                                  cast_from, cast_to));
                        if !cast_to.is_signed() {
                            span_lint(cx, CAST_SIGN_LOSS, expr.span,
                                &format!("casting {} to {} may lose the sign of the value",
                                    cast_from, cast_to));
                        }
                    },
                    (true, true) => {
                        if cast_from.is_signed() && !cast_to.is_signed() {
                            span_lint(cx, CAST_SIGN_LOSS, expr.span,
                                &format!("casting {} to {} may lose the sign of the value",
                                    cast_from, cast_to));
                        }
                        check_truncation_and_wrapping(cx, expr, cast_from, cast_to);
                    }
                    (false, false) => {
                        if let (&ty::TyFloat(TyF64),
                                &ty::TyFloat(TyF32)) = (&cast_from.sty, &cast_to.sty) {
                            span_lint(cx, CAST_POSSIBLE_TRUNCATION,
                                expr.span,
                                "casting f64 to f32 may truncate the value");
                        }
                    }
                }
            }
        }
    }
}

declare_lint!(pub TYPE_COMPLEXITY, Warn,
              "usage of very complex types; recommends factoring out parts into `type` definitions");

#[allow(missing_copy_implementations)]
pub struct TypeComplexityPass;

impl LintPass for TypeComplexityPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(TYPE_COMPLEXITY)
    }
}

impl LateLintPass for TypeComplexityPass {
    fn check_fn(&mut self, cx: &LateContext, _: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) {
        check_fndecl(cx, decl);
    }

    fn check_struct_field(&mut self, cx: &LateContext, field: &StructField) {
        // enum variants are also struct fields now
        check_type(cx, &field.node.ty);
    }

    fn check_item(&mut self, cx: &LateContext, item: &Item) {
        match item.node {
            ItemStatic(ref ty, _, _) |
            ItemConst(ref ty, _) => check_type(cx, ty),
            // functions, enums, structs, impls and traits are covered
            _ => ()
        }
    }

    fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) {
        match item.node {
            ConstTraitItem(ref ty, _) |
            TypeTraitItem(_, Some(ref ty)) => check_type(cx, ty),
            MethodTraitItem(MethodSig { ref decl, .. }, None) => check_fndecl(cx, decl),
            // methods with default impl are covered by check_fn
            _ => ()
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) {
        match item.node {
            ConstImplItem(ref ty, _) |
            TypeImplItem(ref ty) => check_type(cx, ty),
            // methods are covered by check_fn
            _ => ()
        }
    }

    fn check_local(&mut self, cx: &LateContext, local: &Local) {
        if let Some(ref ty) = local.ty {
            check_type(cx, ty);
        }
    }
}

fn check_fndecl(cx: &LateContext, decl: &FnDecl) {
    for arg in &decl.inputs {
        check_type(cx, &arg.ty);
    }
    if let Return(ref ty) = decl.output {
        check_type(cx, ty);
    }
}

fn check_type(cx: &LateContext, ty: &Ty) {
    if in_macro(cx, ty.span) { return; }
    let score = {
        let mut visitor = TypeComplexityVisitor { score: 0, nest: 1 };
        visitor.visit_ty(ty);
        visitor.score
    };
    // println!("{:?} --> {}", ty, score);
    if score > 250 {
        span_lint(cx, TYPE_COMPLEXITY, ty.span, &format!(
            "very complex type used. Consider factoring parts into `type` definitions"));
    }
}

/// Walks a type and assigns a complexity score to it.
struct TypeComplexityVisitor {
    /// total complexity score of the type
    score: u32,
    /// current nesting level
    nest: u32,
}

impl<'v> Visitor<'v> for TypeComplexityVisitor {
    fn visit_ty(&mut self, ty: &'v Ty) {
        let (add_score, sub_nest) = match ty.node {
            // _, &x and *x have only small overhead; don't mess with nesting level
            TyInfer |
            TyPtr(..) |
            TyRptr(..) => (1, 0),

            // the "normal" components of a type: named types, arrays/tuples
            TyPath(..) |
            TyVec(..) |
            TyTup(..) |
            TyFixedLengthVec(..) => (10 * self.nest, 1),

            // "Sum" of trait bounds
            TyObjectSum(..) => (20 * self.nest, 0),

            // function types and "for<...>" bring a lot of overhead
            TyBareFn(..) |
            TyPolyTraitRef(..) => (50 * self.nest, 1),

            _ => (0, 0)
        };
        self.score += add_score;
        self.nest += sub_nest;
        walk_ty(self, ty);
        self.nest -= sub_nest;
    }
}